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Abstract
Within the recently proposed doped-carrier representation of the projected lattice electron
operators we derive a full Ising version of the t–J model. This model possesses the global
discrete Z2 symmetry as a maximal spin symmetry of the Hamiltonian at any values of the
coupling constants, t and J . In contrast, in the spin anisotropic limit of the t–J model, usually
referred to as the t–Jz model, the global SU(2) invariance is fully restored at Jz = 0, so that
only the spin–spin interaction has in this model the true Ising form. We discuss a relationship
between these two models and the standard isotropic t–J model. We show that the low-energy
quasiparticles in all three models share qualitatively similar properties at low doping and small
values of J/t . The main advantage of the proposed Ising t–J model over the t–Jz one is that
the former allows for the unbiased Monte Carlo calculations on large clusters of up to 103 sites.
Within this model we discuss in detail the destruction of the antiferromagnetic (AF) order by
doping as well as the interplay between the AF order and hole mobility. We also discuss the
effect of the exchange interaction and that of the next-nearest-neighbour hoppings on the
destruction of the AF order at finite doping. We show that the short-range AF order is observed
in a wide range of temperatures and dopings, much beyond the boundaries of the AF phase. We
explicitly demonstrate that the local no-double-occupancy constraint plays the dominant role in
destroying the magnetic order at finite doping. Finally, a role of inhomogeneities is discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the discovery of the high-temperature superconductors
(HTSCs), many theoretical investigations have been focused
on the study of the doping evolution from the antiferromagnet-
ically ordered Mott insulator to the BCS-type superconductor.
It is commonly assumed that this evolution is the key ingredient
for the understanding of the physics behind high-temperature
superconductivity and it can adequately be addressed in terms
of the two-dimensional (2D) t–J lattice model. This model is
believed to capture the essential low-energy physics of doped
Mott insulators driven by strong electron correlations. Al-
though it is generally accepted that strong electron correlations
play an important role close to half filling, it remains unclear
to what extent HTSCs can be described entirely in terms of this
minimal electronic model.

One of the reasons for this lack of clarity is that, despite its
simplicity, the exact properties of the t–J model, apart from a
few limiting cases, are still unknown. The vast majority of the
results away from half filling have been obtained for one or two
holes introduced into the AF background. This problem has
been thoroughly analysed with the help of various analytical
and numerical approaches [1–11]. Results for larger dopings
are less comprehensive. Here, one of the important problems
concerns the robustness of the AF order against doping. Most
of the theoretical approaches predict that the long-range AF
order persists up to much larger dopings than observed in
cuprates [12, 13]. It has recently been suggested that including
in consideration the nearest-neighbour hopping may help in
resolving this discrepancy [14]. However, a reliable and well
controlled analytical treatment of the isotropic t–J model
poses a severe technical problem: it is very hard to analytically
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deal with the local no-double-occupancy (NDO) constraint.
On the other hand, because of this constraint, numerical
treatment is available only on rather small lattice clusters,
which immediately raises the problem of the finite-size effects
and, consequently, of the thermodynamical stability of the
results obtained.

An interesting question then arises: is there available
a modification of the isotropic t–J model that allows for
unbiased numerical treatment and at the same time captures
the essential properties of the original t–J model, at least
for a certain parameter range? Some of the computational
difficulties related to the t–J model may be overcome by
means of investigations of its anisotropic limit, i.e. the t–Jz

model. Numerical work has suggested that the t–J and t–Jz

models have many similar properties [15]. In particular, the
stripes, pairing, and Nagaoka states found in the t–Jz model
are very similar to those of the isotropic t–J model [16–20].
In general, despite some significant differences between both
the models [20, 21], at the low-energy scale of order J (� t) it
is reasonable to consider the background spin configuration to
be frozen with respect to the hole dynamics timescale. In this
case the properties of the low-energy quasiparticle excitations
in the t–J model are at least qualitatively similar to those
in the anisotropic t–Jz model. Although this model is more
amenable to numerical calculations, again only rather small
lattice clusters are allowed.

One may hope that the full Ising version of the t–J model
in which the t-term possesses the global discrete Z2 spin
symmetry rather than the SU(2) one results in a more tractable
though still nontrivial model. However, it is not clear how such
a model can be derived directly in terms of the Gutzwiller-
projected lattice electron operators, since those operators
transform themselves in a fundamental representation of
SU(2). In this paper we use the recently proposed doped-
particle representation of the projected electron operators to
derive the full Ising version of the t–J model. We believe
that the results of our study capture some essential low-
energy properties of the isotropic t–J model since the strongly
correlated nature of the problem is preserved.

The doped-particle representation of the t–J model
is especially suited for investigations of the underdoped
regime [22–24]. Some crucial points of this approach are
recalled at the beginning of the following section. Although
this is a slave-particle formulation, it differs from other similar
approaches in that the NDO constraint is identically fulfilled
at half filling. Since the holes are the only charge degrees of
freedom present in the system, the number of charge carriers
is very small close to half filling. Therefore, this approach
is particularly useful for the description of the underdoped
regime, whereas its applicability to the description of strongly
overdoped cuprates is much more involved.

Until now, the doped-particle representation has been
analysed only within mean-field approximations [22, 23]. Our
aim is to go beyond this approximation in such a way that
the slave-particle constraint is exactly taken into account. We
demonstrate that this can be achieved for very large clusters of
the order of 103 lattice sites, provided the SU(2) symmetry
is broken down to Z2 not only in the spin–spin interaction

term but also in the hopping term. Since the effectiveness of
the resulting calculations is independent of the translational
invariance, this approach also allows one to investigate the role
of inhomogeneities which are expected to play an important
role in the cuprate compounds [25].

The paper is organized as follows. Section 2 describes
in detail the derivation of the theoretical model. Section 3
comprises the results of the numerical calculations. Section 4
lists our conclusions.

2. Model and approach

2.1. Doped-carrier formulation of the t–J model

We start with the t–J Hamiltonian on a square lattice [26]

Ht J = −
∑

i jσ

ti j c̃
†
iσ c̃ jσ + J

∑

〈i j〉
(QiQ j − 1

4 ñi ñ j), (1)

where c̃iσ = Pciσ P = ciσ (1 − ni,−σ ) is the projected electron
operator (to exclude the onsite double occupancy), Qi =∑

σ,σ ′ c̃†
iσ τ σσ ′ c̃iσ ′, τ 2 = 3/4, is the electron spin operator

and ñi = Pni P = ni↑ + ni↓ − 2ni↑ni↓. Hamiltonian (1)
contains a kinetic term with the hopping integrals ti j and a
potential J describing the strength of the nearest neighbour
spin exchange interaction. At every lattice site the Gutzwiller
projection operator P = ∏

i(1 − niσ ni−σ ) projects out the
doubly occupied states |↑↓〉, thereby reducing the quantum
Hilbert space to a product of three-dimensional spaces spanned
by the states |0〉i , |↑〉i and |↓〉i . Physically, this modification of
the original Hilbert space results in strong electron correlation
effects. The crucial local no-double-occupancy constraint
is rigorously incorporated into equation (1). However, this
is achieved at the expense of introducing the constrained
electron operators, c̃†

iσ , that obey much more complicated
commutation relations than the conventional ‘unconstrained’
fermion operators. It should be stressed that it is precisely
close to half filling where the Gutzwiller projection is of crucial
importance: the projected electron operator c̃†

iσ in this regime
significantly differs from the bare electron operator c†

iσ (right
at half filling c̃†

iσ = 0).
A natural question then arises: is it possible to rewrite

the t–J Hamiltonian in terms of the conventional fermion and
spin operators in such a way that the NDO constraint for the
lattice electrons transforms itself into one that can be treated,
close to half filling, in a controlled way? Recently, it has been
shown that the t–J Hamiltonian can indeed be represented in
this form [23, 22, 24].

For the reader’s convenience we sketch below the main
points of this scheme. The basic idea behind this approach is to
assign fermion operators to doped carriers (holes, for example)
rather than to the lattice electrons. The t–J Hamiltonian
is expressed then in terms of the lattice spin operators, Si ,
and doped-carrier operators represented by spin-1/2 charged
fermions, diσ .

To accommodate these new operators one obviously needs
to enlarge the original onsite Hilbert space of quantum states.
This enlarged space is characterized by the state vectors |σa〉
with σ = ⇑,⇓ labelling the spin projection of the lattice spins
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and a = 0,↑,↓ labelling the dopon states (double occupancy
is not allowed). In this way the enlarged Hilbert space becomes

Henl
i = {|⇑0〉i , |⇓0〉i , |⇑↓〉i , |⇓↑〉i , |⇑↑〉i , |⇓↓〉i }, (2)

while in the original Hilbert space we can either have one
electron with spin σ or a vacancy:

H = {|↑〉i , |↓〉i , |0〉i }. (3)

The following mapping between the two spaces is then
defined [22]:

|↑〉i ↔ |⇑0〉i , |↓〉i ↔ |⇓0〉i , (4)

|0〉i ↔ |⇑↓〉i − |⇓↑〉i√
2

. (5)

The remaining states in the enlarged Hilbert space, (|⇑↓〉i +
|⇓↑〉i )/

√
2, |⇑↑〉i , |⇓↓〉i are unphysical and should therefore

be removed in actual calculations. In this mapping, a vacancy
in the electronic system corresponds to a singlet pair of a lattice
spin and a dopon, whereas the presence of an electron is related
to the absence of a dopon.

The spin–dopon representation of the t–J Hamiltonian
then reads [24]

Ht−J =
∑

i jσ

2ti j d̃
†
iσ d̃ jσ + J

∑

〈i j〉
[(Si + Mi)(S j + M j )

− 1
4 (1 − ñd

i )(1 − ñd
j )], (6)

with d̃iσ = diσ (1 − d†
i,−σ di,−σ ) being a projected dopon

operator and ñd
i = ∑

σ d̃†
iσ d̃iσ .

The application of Ht−J in this form should be
accompanied by the implementation of the constraint to
eliminate the unphysical states,

SiMi + 3
4 ñd

i = 0, (7)

where Mi = ∑
σ,σ ′ d̃†

iσ τ σσ ′ d̃iσ ′ stands for the dopon spin
operator so that Qi = Si + Mi . Note the important factor of
2 in front of the first term in equation (6). It originates from
the fact that the vacancies are represented in this theory by
the spin–dopon singlets given by equation (5). The projected
lattice electron operators can be explicitly expressed in terms
of the projected dopon operators. For example,

c̃†
i↑ = √

2Pph
i d̃i↓Pph

i = 1√
2
[( 1

2 + Sz
i )d̃i↓ − S+

i d̃i↑], (8)

where Pph
i = 1 − (SiMi + 3

4 ñd
i ) is the projection operator

which eliminates the unphysical states from the i th site.
The above representation of the t–J Hamiltonian is

particularly useful for the description of strongly underdoped
cuprates. Close to half filling nd

i � 1, so that one can safely
drop the tilde sign from the projected dopon operators. This is
due to the fact that in the low doping regime the probability for
the realization of a doubly occupied dopon state is indeed very
low. Despite this, the NDO constraint (7) must be imposed to
eliminate the unphysical degrees of freedom that are present in
this formalism at any finite doping. Note, however, that at half
filling the left hand side of equation (7) vanishes, and thus, in
contrast to the original NDO constraint for the lattice electrons,

this equation turns into a trivial identity4. Additionally, in
this regime one can neglect both the hole–hole interactions
represented by the MiM j term, and the ñd

i ñd
j couplings. Note

also that the insulating phase in this representation is directly
associated with the absence of charged particles.

2.2. The t–Jz and the Ising t–J models

So far, the doped-particle representation of the t–J
model has been analysed only within the mean-field
approximations [23, 22, 24]. Our aim is to go beyond the
mean-field analysis and to carry out calculations for large
enough systems, to make sure that the finite-size effects are
truly negligible. Let us start with the anisotropic limiting case
of the t–J model with the spins polarized only along the z-
component, namely, the t–Jz model. This model is of interest
in itself since it captures some essential physics of strong
electron correlations.

The t–Jz model can be considered as a limiting case of the
t–J model (1) which has an Ising rather than a Heisenberg spin
interaction:

Ht−Jz = −
∑

i jσ

ti j c̃
†
iσ c̃ jσ + Jz

∑

〈i j〉
(Qz

i Qz
j − 1

4 ñi ñ j ), (9)

Here c̃iσ represent the Gutzwiller-projected electron operators.
The global continuous spin SU(2) symmetry of the t–J model
now reduces to the global discrete Z2 symmetry of the t–
Jz model. Although Qz

i Qz
j interaction possesses discrete Z2

symmetry, the original SU(2) symmetry of all other terms of
the Hamiltonian is preserved. Therefore, the symmetry of the
t–Jz model depends on whether Jz is zero or finite. Namely,
for Jz = 0 the SU(2) symmetry is restored again. In contrast,
in the full t–J model both the t- and J -terms possess the same
SU(2) symmetry.

It is therefore natural to seek a representation of the full
Ising version of the t–J model in which the symmetry of the
model does not depend on the values of the model parameters.
Such a representation can straightforwardly be derived within
the dopant–particle formulation of the t–J model. The
physical consequences as well as computational advantages of
such an approach will be discussed in the subsequent sections.

To proceed, we start right from the original t–J
Hamiltonian described in terms of the lattice electrons given
by equation (1), where we now put Q+

i = Q−
i = 0 at

the operator level. We then have for the physical electron-
projected operators

c̃i↑ = Pph
i d̃†

i↓Pph
i = ( 1

2 + Sz
i )d̃

†
i↓,

c̃i↓ = Pph
i d̃†

i↑Pph
i = ( 1

2 − Sz
i )d̃

†
i↑,

(10)

where the projection operator now reads Pph
i = 1 − (2Sz

i Mz
i +

ñd
i /2). It can easily be checked that

Q+
i = (Q−

i )† = c̃†
i↑c̃i↓ ≡ 0.

4 The original local NDO constraint for the lattice electrons,
∑

σ c†
iσ ciσ � 1,

right at half filling reads
∑

σ c†
iσ ciσ = 1.

3
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The kinetic t-term built out of the physical electron operators
given by equations (10) possesses the global Z2 symmetry
rather than the SU(2) one.

Accordingly, the underlying onsite Hilbert space rear-
ranges itself in the following way. The operators c̃i↓, c̃†

i↓ act on
the Hilbert space H↓ = {|⇓, 0〉, |⇓,↑〉}. These operators do
not mix any other states. Operator c̃i↓ destroys the spin-down
electron and creates a vacancy. This vacancy is described by
the state |⇓,↑〉. A similar consideration holds for the c̃i↑ op-
erators. Now, however, the vacancy is described by the state
|⇑,↓〉. These two vacancy states are related by the Z2 trans-
formation. The operator (Qz

i )
2 = 1

4 (1 − ñd
i ) produces zero

upon acting on both. The physical Hilbert state is therefore
a direct sum Hph = H↑ ⊕ H↓. Under the Z2 transforma-
tion (↑↔↓, Sz

i → −Sz
i ) we get H↑ ↔ H↓, which results

in Hph → Hph.5

As a result, one arrives at the representation (9) in
which, however, the electron projection operators are given by
equations (10). All the parts of this Hamiltonian possess the
global discrete Z2 symmetry whereas the global continuous
SU(2) symmetry is completely lost. Close to half filling this
Hamiltonian reduces to the form

H Ising
t−J ≡ Ht−J |Z2

=
∑

i jσ

ti j d̃
†
iσ d̃ jσ + J

∑

〈i j〉
[(Sz

i Sz
j − 1

4 )

+ Sz
i Mz

j + Sz
j Mz

i ], (11)

which should be accompanied by the constraint

2Sz
i Mz

i + 1
2 ñd

i = 0. (12)

In order to emphasize the difference between the t–Jz and the
present model we dub the latter the Ising t–J or for short the
t–J |Z2 model.

The factor of 2 which is presented in the hopping term of
the isotropic t–J Hamiltonian (6) drops out from the hopping
term in the Ising t–J Hamiltonian. This occurs because of the
fact that the equations

c̃†
i↑ = √

2Pph
i d̃i↓Pph

i ,

Pph
i = 1 − (SiMi + 3

4 ñd
i )

which are valid for both the t–J and t–Jz models, are in the
t–J |Z2 model replaced by the following ones:

c̃†
i↑ = Pph

i d̃i↓Pph
i ,

Pph
i = 1 − (2Sz

i Mz
i + 1

2 ñd
i ).

In practical calculations, the NDO constraint (12) can be
taken into account with the help of a Lagrange multiplier.
In order to do this we introduce an additional term to the
Hamiltonian,

λ
∑

i

(2Sz
i Mz

i + 1
2 nd

i ) = λ
∑

i

[( 1
2 + Sz

i )d
†
i↑di↑

+ ( 1
2 − Sz

i )d
†
i↓di↓]. (13)

5 In the isotropic t–J model these two 2D spaces merge into a 3D SU(2)

invariant physical space, where the vacancy is just an antisymmetric linear
combination given by the SU(2) spin singlet (5). The symmetric combination
splits off, since it represents an unphysical spin-triplet state.

Notice that the operator ( 1
2 + Sz

i )d
†
i↑di↑ + ( 1

2 − Sz
i )d

†
i↓di↓

produces eigenvalues 0 and 1, when acting on the onsite
physical and unphysical states, respectively. Because of this,
the global Lagrange multiplier λ → ∞ enforces the NDO
constraint locally. The double dopon occupancy of an arbitrary
site results in an appearance of an unphysical state and hence
enhances the total energy by λ. Therefore, in the large-λ limit
all unphysical states are automatically eliminated and we can in
this limit safely remove the tilde sign from the d operators. In
the following section we show that this constraint is of crucial
importance for the description of the AF order at finite doping.

2.3. Monte Carlo calculations

The total Hamiltonian takes the form

H λ
t−J |Z2

= H↑ + H↓ + J
∑

〈i j〉
Sz

i Sz
j + const, (14)

with

H↑ =
∑

i j

ti j d
†
i↑d j↑ +

∑

i

d†
i↑di↑

[
λ

(
1

2
+ Sz

i

)
+ J

2

∑

〈 j〉i

Sz
j

]
,

(15)

H↓ =
∑

i j

ti j d
†
i↓d j↓ +

∑

i

d†
i↓di↓

[
λ

(
1

2
− Sz

i

)
− J

2

∑

〈 j〉i

Sz
j

]
,

(16)
where 〈 j〉i denotes neighbouring sites of a given site i . We
have neglected the hole–hole interaction in H λ

t−J |Z2
, which is

perfectly justified in the low doping regime. In order to verify
this approximation we have carried out additional calculations
with the hole–hole interaction being taken into account in the
mean-field approximation. The difference is negligible and
therefore we do not present them here. Note that the interaction
strength in H λ

t−J |Z2
is exactly the same as in the standard

formulation of the t–J model. Absence of any renormalization
of the model parameters originates from the fact that the
projection procedure is explicitly built into equation (14),
provided λ → ∞. Despite its complexity, with the Monte
Carlo (MC) method, one can investigate the Hamiltonian (14)
for very large systems without any approximation. Since
[Sz

i , H λ
t−J |Z2

] = 0 the spin degrees of freedom can be analysed
within the classical Metropolis algorithm. However, since the
effective Hamiltonian (14) includes both fermionic as well
as classical degrees of freedom, this algorithm needs to be
modified. The procedure is as follows:

(i) an initial configuration of {Sz
i } is generated;

(ii) the Hamiltonians (15), (16) are diagonalized and the free
energy F of the fermionic subsystem in the canonical
ensemble is determined;

(iii) two sites with opposite spins Sz are randomly chosen;
then, both the spins are flipped;

(iv) step (ii) is repeated, determining a new value of the free
energy F ′;

(v) if F ′ < F or exp[(F − F ′)/kT ] > x , where x is a
random number from the interval [0; 1), the new {Sz

i }
configuration is accepted, added to the ensemble and the
procedure goes to step (iii), otherwise it goes directly to
step (iii).

4
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This is the Metropolis algorithm, but with the internal
energy in statistical weights replaced by the free energy of the
fermionic subsystem. A detailed description of this approach
can be found in [27]. Concurrently with the MC simulation an
iterate procedure calculating the distribution of holes is carried
out in a self-consistent way.

Most of the numerical results have been obtained for a
20 × 20 system with periodic boundary conditions. However,
in order to check the influence of finite-size effects we have
carried out calculations on clusters of up to 1600 lattice sites
and with averaging over the boundary conditions [28]. This
problem is discussed at the end of the next section.

In order to eliminate the unphysical states in the Monte
Carlo simulations, we have taken λ = 100t . Therefore, the
Lagrange multiplier is by far the largest energy scale in the
system, which guaranties the single occupancy of each lattice
site. The simulations have been carried out in the canonical
ensemble, which allows for accurate control of the doping
level. We assume an absence of the ferromagnetic order.
Namely, we take

∑
i Sz

i = ∑
i Mz

i = 0, what is reflected in
the third point of the MC procedure.

The aim of the simulations is to determine how the
antiferromagnetic order and the spectral properties are affected
by doping. We start our discussion with the doping dependence
of the spin–spin correlation function for the projected physical
electron operators

g(r) = 4

N2

∑

i

∑

j

〈(Sz
i + Mz

i )(Sz
j + Mz

j )〉

× exp[iK · (Ri − R j)]δ̄(r − |Ri − R j |), (17)

where K = (π, π) and

δ̄(x) =
{

1 if |x | � 0.5a,

0 otherwise,

with a being the lattice constant. 〈· · ·〉 in equation (17) means
an average over the spin configurations generated in the MC
run. g(r) allows one to distinguish between the long-range
order (LRO), when it remains finite for arbitrary r , quasi-
long-range order (QLRO), when g(r) decays algebraically,
and short-range order (SRO), when g(r) decays exponentially.
Calculations of the spin–spin correlation function will be
accompanied by results obtained for a static spin-structure
factor, defined as

S(q) = 1

N2

∑

i j

eiq(Ri −R j )〈(Sz
i + Mz

i )(Sz
j + Mz

j )〉. (18)

The third quantity that we use in the following discussion is the
hole spectral function given by

A(k, ω) = − 1

π
Im G(k, ω + i0+), (19)

where

G(k, z) =
∑

i

∑

j

exp{ik(Ri − R j)}

× 〈Gσ (Ri ,R j , z)[ 1
2 − s(σ )Sz

i ][ 1
2 − s(σ )Sz

j ]〉, (20)

with s(↑) = 1 and s(↓) = −1. Here, similarly
to equation (17), 〈· · ·〉 indicates averaging over spin
configurations and

Gσ (Ri ,R j , z) = {[z − Hσ ]−1}i j (21)

is the real-space Green function for a given spin configuration
{Sz

i }. The presence of factors 1
2 − s(σ )Sz

i in equation (20)
follows from equation (10). Note that the spin–spin correlation
function, the spin-structure factor and the spectral function are
defined for physical electron operators, c̃i .

3. Numerical results

3.1. Homogeneous systems

As discussed in the preceding sections the derived represen-
tation differs from the standard t–Jz Hamiltonian in that the
SU(2) symmetry is broken also for J = 0. In order to visual-
ize the physical consequences of this difference we start with
calculations for the one-hole case. In this regime large clus-
ters have been analysed numerically both for the t–Jz and t–J
models.

In the main panel of figure 1 we show the one-hole energy
calculated at T = 0 for an 8 × 8 cluster without the 1

4 ñi ñ j

term. Here, we compare our data with exact results obtained
for a 50-site t–Jz cluster [29] as well as with recent exact
results for a bulk t–J system [11]. In the inset of figure 1
we compare exact results obtained for 4 × 4 t–J |Z2 and t–
Jz clusters [30] for a wider range of the J/t ratio. In two
limiting cases J/t → 0 and J/t → ∞ the one-hole energy
obtained in our approach is the same as in the t–Jz model.
It can be explained in the following way. For J = 0, the
ferromagnetic Nagaoka state becomes a ground state in both
the approaches. In this case the propagation of a hole is
not perturbed by the magnetic order and the one-hole energy
equals −4t . The main difference between t–Jz and t–J |Z2

approaches consists in the symmetry of the hopping term.
Therefore, they merge in the case J/t � 1, when the system
properties are determined predominantly by the same spin–
spin interaction. In the regime of intermediate J the differences
are most pronounced. The one-hole energy obtained for the t–
J model in this regime is in between the results obtained for
t–Jz and t–J |Z2 approaches. Here, the differences between t–
J and t–Jz models are comparable to those between t–J and
t–J |Z2 ones.

Next, we investigate how the doping affects the
antiferromagnetic order. The previous studies of the t–J
model clearly indicate that the long-range hopping amplitudes
significantly modify the bandwidth and the dispersion of
the quasiparticles [31]. Recent Green’s function Monte
Carlo calculations demonstrate that the next nearest neighbour
hopping reduces the critical doping at which the AF LRO
disappears [14]. The importance of these results follows from
the fact that in the t–J model with only the nearest neighbour
hopping, antiferromagnetic correlations persist up to hole
concentrations much larger than the ones observed in HTSC
materials. One may expect that in the absence of the transverse
spin–spin interaction the robustness of LRO should be even
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Figure 1. One-hole energy as a function of J/t for a 8 × 8 cluster at
T = 0. The data labelled as t–Jz and t–J have been taken from [29]
and [11], respectively. In the latter case, it is the energy of a hole
with momentum (π/2, π/2). The inset shows results obtained for
4 × 4 t–J |Z2 and t–Jz systems. Here, the dashed line shows results
presented in [30] for the t–Jz model. Since for J → 0 the
ferromagnetic order sets in, the constraint

∑
i Sz

i = 0 is now relaxed.

more pronounced. Moreover, the previous analysis of the one-
and two-hole spectra in the t–Jz model [20] has shown that for
t/J < 5 half of the one-hole band width does not exceed 0.08t .
Therefore, the intra-sublattice hopping should be a source
of an important contribution to the kinetic energy even for
small values of the second- t ′ and third- t ′′ nearest-neighbour
hopping integrals. The significance of the long-range hopping
for the AF order is demonstrated in figure 2, where we
compare the spin–spin correlation functions calculated with
and without t ′ and t ′′. In all the figures showing g(r) we use
a logarithmic scale for the vertical axis. Therefore, for LRO,
QLRO and SRO, g(r) should be represented asymptotically
by a constant function, a logarithmic function and a straight
line, respectively. In the following, δ denotes the average
concentration of holes.

One can see that the influence of the long-range hopping
depends, even qualitatively, on the value of the exchange
coupling J . For a small value of J , the AF order is enhanced
when hoppings to second- and third-nearest neighbours are
allowed (for J = 0.2t see panel (A) in figure 2). On the
other hand, for bigger values of J , these hoppings reduce the
AF order (for J = 0.4t see panel (B) in figure 2). Such a
behaviour could be explained as follows. In the presence of
only nearest-neighbour hopping there is a strong competition
between the energy of spin–spin interaction and the hole
kinetic energy. This results from the fact that in this case
only inter-sublattice hopping is allowed. From equation (13)
one can then infer that it is possible only in regions where the
AF order is absent. Then, nonzero t ′ and t ′′ allow for intra-
sublattice hopping, thereby leading to gaining of the kinetic
energy without destroying the AF order. This mechanism is
effective for J � 0.25t . On the other hand, for t ′ = t ′′ = 0
and large J , holes are almost localized and, therefore, only
weakly frustrate the AF state. The intra-sublattice hopping

Figure 2. Panels (A) and (B) show g(r) calculated for kT = 0.1t .
J = 0.2t (A) and J = 0.4t (B). The curves from the top to the
bottom have been obtained for δ = 0.02, 0.04, 0.06, 0.08. Solid
(dashed) lines show results obtained for t ′ = t ′′ = 0 (t ′ = −0.27t
and t ′′ = 0.2t). Panel (C) shows the doping dependence of the static
spin-structure factor S(π,π) at kT = 0.1t for t ′ = −0.27t and
t ′′ = 0.2t .

allows for the propagation of holes, which effectively reduces
the AF LRO.

The doping-induced destruction of the AF LRO can
directly be seen in figure 2(C), where we present the spin-
structure factor obtained for t ′ = −0.27t and t ′′ = 0.2t . This
quantity is important in that it is directly accessible in, e.g.,
neutron scattering experiments. The maximal doping for which
the AF state still exists strongly depends on the magnitude
of the exchange interaction. This result contrasts with the
recently reported Green’s function Monte Carlo study of the
t–J model [14], where the AF LRO vanishes at δ = 0.1 and
δ = 0.13 for J = 0.2t and J = 0.4t , respectively. In our
approach the experimental data for the critical doping in HTSC
can be reproduced provided J < 0.2t .

In order to illustrate the interplay between the AF order
and the mobility of holes we have calculated the hole spectral
functions A(k, ω) (see figures 3, 4). For t ′ = t ′′ = 0 and
small δ one can see almost localized particles with very small
dispersion. A similar situation occurs in the t–Jz model, but
it is not the case for the t–J one, where the spin-flip term
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Figure 3. Spectral functions A(k, ω) calculated for kT = 0.1t along the main symmetry lines of the Brillouin zone with t ′ = t ′′ = 0.

can undo the defects generated by a moving hole and hence it
allows for its much higher mobility. In the present approach
holes become mobile when doping increases, i.e. when the
AF background disappears. The onset of mobile holes is
accomplished through a gradual transfer of the spectral weight
from the vicinity of the almost localized level. Close to half
filling the most significant transfer takes place in states with
k = (0, 0) and k = (π, π). However, even for relatively large
doping the spectral functions remain broad for all the momenta.

For nonzero t ′ and t ′′ there are mobile holes even for
small doping, but the spectral functions still remain very
broad. Also in this case, doping is responsible for significant
modification of the dispersion relation of holes. In figure 4
we compare A(k, ω) calculated for δ = 0.02, . . . , 0.14 with
t ′ = −0.27t and t ′′ = 0.2t . Along with the destruction of

the AF LRO, there is an increasing contribution of nearest
neighbour hopping to the hole kinetic energy. For δ = 0.02
the peaks in spectral functions can be fitted by the dispersion
relation with t = 0, whereas for δ = 0.14 the AF correlations
hardly influence the nearest neighbour hopping. Note that
such a substantial modification of the dispersion relation may
change the topology of the Fermi surface. Doping affects not
only the effective dispersion relation, but also frustrates the
AF background. The latter effect is responsible for strong
broadening of the spectral functions that is visible in figure 4.
Comparison of figure 2 with figures 3 and 4 demonstrates
that the mobility of holes and destruction of the AF LRO are
mutually connected with each other in the sense that mobility
affects AF LRO and, vice versa, AF order affects the mobility
of holes.
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-6

-4

-2

0

2

4

/

( , ) (0 , ) (0 ,0 ) ( , )
-6

-4

-2

0

2

4

/

( , ) (0 , ) (0 ,0 ) ( , )

-6

-4

-2

0

2

4

/

( , ) (0 , ) (0 ,0 ) ( , )
-6

-4

-2

0

2

4

/

( , ) (0 , ) (0 ,0 ) ( , )

δ = 0.02 δ = 0.06

δ = 0.14δ = 0.10

Figure 4. Spectral functions A(k, ω) calculated along the main symmetry lines of the Brillouin zone for J = 0.2t , kT = 0.1t and various
dopings. t ′ = −0.27t and t ′′ = 0.2t have been assumed.

We now turn our attention to the temperature dependence
of the spin–spin correlation function and the spectral properties
of holes. It is known that the Néel temperature drops
rapidly when the parent compounds of the high-temperature
superconductors are doped with holes. Similar behaviour can
be inferred from figure 5, where the temperature dependence
of g(r) is presented for different doping levels. One can note
that doping strongly reduces the LRO, whereas its influence
on the SRO is much weaker. In particular, the nearest
neighbour correlation functions g(1) calculated for δ = 0.02
and δ = 0.06 are qualitatively and quantitatively close to
each other. These results suggest that the AF SRO should
be observed in a wide range of temperatures and dopings,
much beyond the boundaries of the AF phase. This remains
in agreement with recent experiments on high-temperature
superconductors suggesting that with doping the long-range
Néel order gives way to short-range order with a progressively
shorter correlation length. As a result, at optimal doping the
static spin correlation length is no more than two or three lattice
spacings [32].

The correlation function discussed above and the spin-
structure factor describe the background composed of the
localized spins, which, as mentioned in the preceding
paragraphs, is to some degree affected by the motion of
doped holes. Therefore, the reduction of the antiferromagnetic

correlations has to be observed also in the dynamics of the
carriers. It is shown in figure 6, where we demonstrate the
temperature dependence of the spectral functions. When the
temperature increases, the number of spin defects in the Néel
state increases as well, and this enables the nearest neighbour
hopping, thereby allowing holes to lower their kinetic energy.
This mechanism leads to trapping of holes in the regions of
broken antiferromagnetic bonds and forming ferromagnetic
spin polarons, where the hole hopping does not frustrate the
spin background. The contribution of the nearest neighbour
hopping becomes visible in the spectral functions, where the
increase of the temperature causes a significant broadening of
the spectral lines. Similarly to the spectral functions obtained
for a single hole in the t–t ′–t ′′–J model [33], the width
of the peaks in the A(k, ω) is too small when compared
to the results of the angle–resolved spectroscopy (ARPES)
measurements [34] on Sr2CuO2Cl2. It has recently been
argued that strong electron–phonon interaction [35, 36] may
explain the very broad peaks observed in the insulating copper
oxides [37, 38].

In the present approach, holes interact with spins through
the intersite interaction of strength J as well as through the
onsite constraint with the Lagrange multiplier λ, and both of
these interactions can be responsible for the destruction of the
AF LRO. In order to determine the underlying mechanism we
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Figure 5. g(r) as a function of temperature for J = 0.2t and
δ = 0.02 (upper panel) and δ = 0.06 (lower panel). The lines from
the top to the bottom show g(1), g(2) and g(10). t ′ = −0.27t and
t ′′ = 0.2t have been assumed.

have carried out simulations taking into account one of these
interactions at a time. The results shown in the upper panel
of figure 7 clearly demonstrate that the constraint plays the
dominating role in the destruction of the AF state. When
both these interactions are taken into account the LRO is
completely destroyed and only AF SRO can be observed for
δ = 0.08. However, if we ignore the constraint, LRO is
restored. The results obtained without the intersite spin–hole
interaction (Sz

i Mz
j terms) are almost indistinguishable from the

ones obtained with both the interactions. Note that for λ = 0
the NDO constraint is completely neglected. This illustrates
the importance of the constraint for a realistic description
of the AF order at finite doping. Additionally, in order to
determine the value of the Lagrange multiplier for which the
results converge and the NDO constraint is fulfilled, we have
calculated g(r) for a wide range of λ. The results are presented
in the lower panel of figure 7. One can see that the assumed
value λ = 100t is large enough to enforce the constraint.
After explaining the role of the farther neighbour hopping we
restrict the following analysis to the case of t ′ = −0.27t and
t ′′ = 0.2t .

3.2. Inhomogeneous systems

Since our method works for systems with broken translational
invariance, it is tempting to apply it as well to inhomogeneous
systems. It has recently been shown with the help of

scanning tunnelling spectroscopy that nanoscale electronic
inhomogeneity is an inherent feature of many groups of high-
temperature superconductors. By a direct probing of the
local density of states, these methods reveal strong spatial
modulation of the energy gap in the superconducting Bi-
based compounds [39]. Very recently, STM experiments
have shown a strong correlation between position of the
dopant atoms and all manifestations of the nanoscale electronic
disorder [40, 41]. Thus, these experiments proved essentially
that the impurities were the source of the inhomogeneity. On
the other hand, they revealed a very important feature: there
is a positive correlation between the magnitude of a gap and
the position of an out-of-plane oxygen atom [40]. These
are the atoms which have been doped into the insulating
parent compound in order to introduce holes to the CuO2

planes. The gap–impurity correlation has been explained as
a result of the inhomogeneity-enhanced exchange interaction
in the t–J model [42]. Assuming that purely electronic
models contain the essential physics of cuprates, the same
interaction is responsible for both superconductivity and the
AF order. Therefore, inhomogeneity may affect the AF state
as well. Additionally, localization of holes by the electrostatic
potential of out-of-plane oxygen atoms may also affect the
AF order, since the hopping of holes frustrates the AF LRO.
In the following, we investigate the role played by these
mechanisms in the strongly underdoped regime. In order to
investigate the latter one, we extend the Hamiltonian (14) by
adding a term responsible for inhomogeneity-induced diagonal
disorder

H λ
t−J |Z2

→ H λ
t−J |Z2

+
∑

iσ

εi d
†
iσ diσ , (22)

where

εi =

⎧
⎪⎨

⎪⎩

V , if there is an out-of-plane oxygen atom

above site i ,

0, otherwise.

Since in HTSCs each doped oxygen atom introduces one
hole in the CuO2 plane, we have carried out calculations
for the number of impurities equal to the number of holes.
Technically, for each Monte Carlo simulation we generate a
random configuration of the out-of-plane oxygen atoms and
keep it frozen during the whole run. In this way both holes
and localized spins feel a quenched disorder.

In the upper panel of figure 8 we show a comparison of
the correlation function g(r) calculated in the presence of the
diagonal disorder and without it. From this figure one sees
that the influence of the diagonal disorder is almost negligible,
at least for small-to-moderate values of the potential V . For
larger values of V , the presence of negatively charged out-of-
plane oxygen atoms reduces the hole mobility, resulting in a
visible enhancement of the spin–spin correlation function. It
is worthwhile to emphasize that the NDO constraint becomes
very important in the presence of the diagonal disorder despite
the low concentration of holes. In a homogeneous system
with δ � 1 this constraint is less important as the probability
of double-hole occupancy is proportional to δ2. Since the
negatively charged out-of-plane oxygen atoms locally enhance
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Figure 6. Spectral functions A(k, ω) calculated along the main symmetry lines of the Brillouin zone for J = 0.2t . t ′ = −0.27t and t ′′ = 0.2t
have been assumed.

the hole concentration, neglecting the NDO may significantly
modify the results [42].

Now we turn to the influence of the inhomogeneity-
induced enhancement of the exchange interaction. Following
the results of [42] we assume J to a be site-dependent quantity:

Ji j = J
(
1 + ηi j

)
, (23)

where

ηi j =

⎧
⎪⎨

⎪⎩

η > 0, if there is an out-of-plane oxygen atom

above site i or j ,

0, otherwise.

In contrast with the superconducting gap [42], the AF order
is hardly modified by this mechanism. This can be clearly
inferred from the lower panel in figure 8. The regime
for a magnetic ordering predicted by many calculations
in the t–J model extends to much larger dopings than
observed in cuprates, and this discrepancy is sometimes
attributed to the inhomogeneities, which are neglected in many
theoretical approaches (see the discussion in [14]). Although
inhomogeneities are expected to play an important role in
high-temperature superconductors [25], our results indicate
that their influence in the AF ordering is rather limited. In
particular, we expect that the inhomogeneities introduced
by the out-of-plane oxygen atoms cannot explain the above
discrepancy.
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Figure 7. g(r) for J = 0.2t, kT = 0.1t, δ = 0.08, t ′ = −0.27t and
t ′′ = 0.2t . In the upper panel the topmost curve has been calculated
with λ = 0. The other curves show results obtained for λ = 100t
with and without the spin–hole exchange interaction. The lower
panel shows g(r) for different values of λ. Note that the results for
λ = 100t and 300t are almost indistinguishable.

3.3. Finite-size effects

Since our analysis has been carried out on finite clusters, it is
necessary to check to what extent the results are affected by the
finite-size effects. One of the measures of the significance of
the finite-size effects is a sensitivity to the boundary conditions.
Therefore, we have calculated the correlation functions and
the spectral functions for systems with different boundary
conditions and compared them to those which have been
obtained with periodic boundary conditions. Here, we have
used a method known as averaging over boundary conditions
(ABC) [28]. Each time a particular hole jumps out of the
cluster, it is mapped back into the cluster with wavefunction
with a different phase. Then the results are averaged over
these phases; thereby, the reciprocal space is probed at a much
greater number of points than in the case of periodic boundary
conditions. In our simulations we have used a slightly modified
version, where the phases were chosen randomly in each
Monte Carlo step. The averaging over the boundary conditions
has been carried out concurrently with averaging over the
ensemble generated in Monte Carlo run [43]. This way it does
not require an additional computational effort.

Another more direct way to check the influence of the
finite-size effects is to compare results obtained on clusters
of different sizes. In order to do so, we have repeated some
calculations on 40 × 40 cluster. Figure 9 shows a comparison
of spectral functions obtained for 20 × 20 and 40 × 40 clusters
with periodic boundary conditions as well as for a 20 × 20
cluster with ABC. Since the false-colour plots of these spectral
functions are very similar to each other, we present their energy
dependence for a few selected points of the Brillouin zone.
One can see from this figure that the coherent part of the

Figure 8. g(r) for J = 0.2t in the presence of the out-of-plane
oxygen atoms. The upper panel demonstrates the influence of the
diagonal disorder, whereas the lower panel shows effects coming
from the site-dependent exchange interaction. The model parameters
(δ, V, η) are given in the legend.

spectral functions is almost exactly the same in these three
cases. The low-intensity parts also look very similar, though
some differences can be seen. Another quantity we have used
to analyse the finite-size effects is the correlation function g(r).
Figure 10 shows g(r) determined for the same three systems
for which the spectral functions are presented in figure 9.
Despite minor quantitative differences the overall character of
all three correlation functions is the same. Though we have
not carried out a systematic finite-size scaling, the similarity
of both the spectral functions and the correlation functions
constitutes a significant indication that our results are also valid
in the thermodynamic limit.

4. Summary

We have developed a doped-carrier representation of the Ising
t–J model. In this formulation, the system is described
in terms of fermions interacting with static localized spins.
Although it is a slave-particle approach, in contrast with many
similar approaches, the local NDO constraint is taken into
account exactly. The proposed Hamiltonian has the global
Z2 symmetry at any values of the parameters, J and t . This
model is of interest in itself since it represents a simple though
nontrivial electron system which captures the physics of strong
electron correlations. The issue of how these correlations
affect the magnetic ordering of the lattice spins is thoroughly
investigated in the present work. Besides, this model may
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Figure 9. Spectral functions calculated for selected points of the
Brillouin zone. These results have been obtained on 20 × 20 (solid
line) and 40 × 40 (dashed line) clusters with periodic boundary
conditions and on a 20 × 20 cluster with ABC (dotted line). Since the
positions of the coherent peaks obtained with the help of these three
approaches are almost indistinguishable, we have cut the vertical axis
in such a way that the incoherent parts are more pronounced. These
results have been obtained for J = 0.2t , kT = 0.1t , and δ = 0.02.

provide at least for some values of the model parameters a
guess supported by unbiased numerical calculations regarding
the actual low-energy behaviour of the quasiparticle excitations
in a more realistic isotropic t–J model.

In particular, we have calculated the one-hole energy and
compared our results with those obtained for t–Jz and t–J
models. We have found that the one-hole energy is the same as
in the t–Jz model in two limiting cases, J → 0 and J → ∞.
For intermediate J the one-hole energy obtained for the t–J
model is in between the results obtained for t–Jz and t–J |Z2

approaches and the differences between t–J and t–Jz models
are comparable to those between t–J and t–J |Z2 ones.

The main advantage of the present approach consists
in that it can be applied for very large systems and the
computational effort increases much more slowly with the size
of the system than, e.g., for exact diagonalization. Moreover,
it works for arbitrary value of the coupling J and for arbitrary
doping level. In particular, in the small-J regime the exact
diagonalization and quantum Monte Carlo methods give rather
poor results. This is because of the fact that in this regime the
size of the defects generated by moving holes is comparable to
or larger than the size of cluster the calculations can be carried
out on. Since the clusters in our approach are much larger, this
problem is less significant. Additionally, our method does not

Figure 10. Correlation function g(r) for the same systems as in
figure 9. Also, the same parameters have been used. The insets show
examples of snapshots of the spin configurations for 40 × 40 and
20 × 20 clusters (black (white) square corresponds to
Sz

i = 1
2 (Sz

i = − 1
2 )).

require translational invariance of the system. This feature is
especially important in the context of the recent experimental
results, which clearly indicate the presence of inhomogeneities
in cuprates. It could also be applicable to optical lattices, where
the translational symmetry is broken by a trap.

Using the proposed approach we have found that the AF
SRO persists for temperatures and dopings which are much
beyond the boundaries of the AF LRO phase, which is in
agreement with recent experiments on the high-temperature
superconductors. We have also demonstrated that the AF
LRO depends on the exchange interaction J . It concerns the
transition temperature as well as the maximal doping at which
the AF LRO vanishes. We explicitly demonstrate that the
local no-double-occupancy constraint plays the dominant role
in destroying the magnetic order at finite doping.

Finally, we have shown that the inhomogeneities induced
by the out-of-plane oxygen atoms have a rather limited
influence on the spin–spin correlation functions, at least
in the underdoped regime. Although localization of holes
by their electrostatic potential stabilizes the AF LRO, this
mechanism becomes important only for a relatively strong
diagonal disorder. Such a limited influence of inhomogeneities
on the AF order is closely related to the NDO constraint.
Note that exactly at half filling the diagonal disorder does not
influence the system, provided the NDO is properly taken into
account.
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